metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Hong Zhu,^{a,b} Ming-Hua Zeng^a* and Seik Weng Ng^c

^aDepartment of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China, ^bDepartment of Chemistry, Huanggang Normal College, Huangzhou 438000, Hubei, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zmhzsu@163.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.031 wR factor = 0.094 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[tris(μ_2 -oxalato- $\kappa^4 O, O': O''O'''$)bis(μ_2 -4,4'-bipyridyl- $\kappa^2 N, N'$)bis(4,4'bipyridyl- κN)trimanganese(II)]

The layer structure of the title compound, $[Mn_3(C_2O_4)_3 - (C_{10}H_8N_2)_4]$, consists of undulating manganese(II) oxalate chains with terminal and bridging 4,4'-bipyridine ligands stacked alternately along the chains. The compound is isostructural with $[Fe_3(C_2O_4)_3(C_{10}H_8N_2)_4]$, the structure of which has previously been described in detail [Zheng, Fang, Lii, Song, Xin, Fun, Chinnakali & Razak (1999). *J. Chem. Soc. Dalton Trans.* pp. 2311–2316].

Received 6 April 2005 Accepted 13 April 2005 Online 23 April 2005

Comment

Compounds of the formula $[M(C_2O_4)(C_{10}H_8N_2)]$, where *M* is Fe^{II}, Co^{II}, Ni^{II} or Zn^{II}, are isostructural and consist of twodimensional networks (Yu *et al.*, 1999). Another study published at the same time reported the Co^{II} complex, along with an iron(II) complex, [Fe₃(C₂O₄)₃(C₁₀H₈N₂)₄], which exhibits weak antiferromagnetic behaviour (Zheng *et al.*, 1999). That compound features Fe(C₂O₄) chains, as well as terminal and bridging heterocycles stacked alternately along the chains. The title manganese(II) compound, (I) (Fig. 1), is isostructural with the latter iron(II) compound, which has already been described in detail by Zheng *et al.* (1999).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of a portion of the layer structure of (I). Displacement ellipsoids are drawn at the 30% probablity level and H atoms are shown as small spheres of arbitrary radii. Symmetry codes are given in Table 1.

Experimental

The title compound was obtained as the main phase (in *ca* 30% yield, based on Mn) from the hydrothermal reaction of potassium oxalate (0.08 g, 0.5 mmol), manganese dichloride tetrahydrate (0.10 g, 0.5 mmol), 4,4'-bipyridine (0.08 g, 0.5 mmol) and water (10 ml) at 413 K for 120 h. The reactants were placed in a Teflon-lined stainless steel Parr bomb and heated. After cooling of the bomb to room temperature at 10 K h⁻¹, pale yellow crystals of (I) were obtained.

Crystal data

$\begin{bmatrix} Mn_{3}(C_{2}O_{4})_{3}(C_{10}H_{8}N_{2})_{4} \end{bmatrix}$ $M_{r} = 1053.62$ Monoclinic, $P2_{1}/c$ a = 16.289 (2) Å b = 16.220 (2) Å c = 16.452 (2) Å $\beta = 94.981$ (2)° V = 4330.1 (9) Å ³ Z = 4	$D_x = 1.616 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation Cell parameters from 976 reflections $\theta = 3.0-26.7^{\circ}$ $\mu = 0.94 \text{ mm}^{-1}$ T = 295 (2) K Block, pale yellow $0.32 \times 0.16 \times 0.12 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area- detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2002) $T_{\rm min} = 0.766, T_{\rm max} = 0.896$ 35 776 measured reflections	9421 independent reflections 7912 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 27.0^{\circ}$ $h = -20 \rightarrow 20$ $k = -20 \rightarrow 20$ $l = -21 \rightarrow 20$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.094$ S = 1.01 9421 reflections 622 parameters	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0565P)^{2} + 0.9427P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.38 \text{ e} \text{ Å}^{-3} \Delta\rho_{min} = -0.29 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Mn1-O1	2.144 (1)	Mn2-O7	2.155 (1)
Mn1-O3	2.139(1)	Mn2-N4 ⁱⁱ	2.328 (1)
$Mn1 - O10^{i}$	2.160(1)	Mn2-N5	2.307 (1)
Mn1-O12 ⁱ	2.151 (1)	Mn3-O6	2.133 (1)
Mn1-N1	2.374 (1)	Mn3-O8	2.157 (1)
Mn1-N3	2.286 (1)	Mn3-O9	2.163 (1)
Mn2-O2	2.151 (1)	Mn3-O11	2.165 (1)
Mn2-O4	2.160 (1)	Mn3–N6 ⁱⁱⁱ	2.268 (1)
Mn2–O5	2.162 (1)	Mn3–N7	2.332 (1)
O1-Mn1-O3	78.38 (4)	O4-Mn2-N5	88.43 (5)
$O1 - Mn1 - O10^{i}$	102.53 (4)	05 - Mn2 - 07	78.65 (4)
$O1-Mn1-O12^{i}$	170.80 (5)	O5-Mn2-N4 ⁱⁱ	86.25 (5)
O1-Mn1-N1	86.73 (5)	O5-Mn2-N5	92.28 (5)
O1-Mn1-N3	99.08 (5)	O7-Mn2-N4 ⁱⁱ	86.12 (5)
$O3-Mn1-O10^{i}$	171.66 (4)	O7-Mn2-N5	92.34 (5)
$O3-Mn1-O12^{i}$	99.76 (4)	N4 ⁱⁱ -Mn2-N5	178.05 (5)
O3-Mn1-N1	86.58 (5)	O6-Mn3-O8	78.22 (4)
O3-Mn1-N3	98.51 (5)	O6-Mn3-O9	100.94 (4)
$O10^{i} - Mn1 - O12^{i}$	78.00 (4)	O6-Mn3-O11	175.91 (5)
$O10^{i}-Mn1-N1$	85.20 (5)	O6-Mn3-N6 ⁱⁱⁱ	95.13 (5)
$O10^{i}$ -Mn1-N3	89.57 (5)	O6-Mn3-N7	90.83 (5)
O12 ⁱ -Mn1-N1	84.16 (5)	O8-Mn3-O9	172.57 (5)
O12 ⁱ -Mn1-N3	90.10 (5)	O8-Mn3-O11	102.57 (4)
N1-Mn1-N3	172.92 (5)	O8-Mn3-N6 ⁱⁱⁱ	97.03 (5)
O2-Mn2-O4	78.60 (4)	O8-Mn3-N7	88.49 (5)
O2-Mn2-O5	100.77 (4)	O9-Mn3-O11	77.76 (4)
O2-Mn2-O7	178.76 (4)	O9-Mn3-N6 ⁱⁱⁱ	90.39 (5)
O2-Mn2-N4 ⁱⁱ	92.75 (5)	O9-Mn3-N7	84.13 (5)
O2-Mn2-N5	88.78 (5)	O11-Mn3-N6 ⁱⁱⁱ	88.77 (5)
O4-Mn2-O5	179.04 (4)	O11-Mn3-N7	85.18 (5)
O4-Mn2-O7	101.97 (4)	N6 ⁱⁱⁱ -Mn3-N7	172.58 (5)
O4-Mn2-N4 ⁱⁱ	93.06 (5)		

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$.

The structure was solved using atomic coordinates taken from the Fe analogue (Zheng *et al.*, 1999). The H atoms were positioned geometrically and refined with a riding model, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

H-atom parameters constrained

metal-organic papers

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; method used to solve structure: atomic coordinates taken from the Fe analogue (Zheng *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank Guangxi Normal University and the University of Malaya for supporting this study.

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Yu, J. Y., Lawandy, M. A., Li, J., Yuen, T. & Lin, C. L. (1999). *Inorg. Chem.* 38, 2695–2704.
- Zheng, L.-M., Fang, X., Lii, K.-H., Song, H.-H., Xin, X.-Q., Fun, H.-K., Chinnakali, K. & Razak, I. A. (1999). *J. Chem. Soc. Dalton Trans.* pp. 2311– 2316.